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Abstract

S_ware development figr NASA missions is a

particularly ct, allenging task. Missions are e.ttremely

ambitious scientifically, have very strict time frames, and

must be accomplished with a ma.rimum degree of

reliability'. Verificatiop technologies must therefore be
pushed fitr beyond their current capabilities. Moreover,

reuse and adaptation of sofnvare architectures and

components must be incorporated in software

development within and across missions. This paper

discusses NASA applications that we are currently

investigating from these perspectives.

1. Introduction

The challenges that NASA faces in software

development are untypical of most organizations.
Preparation for a single NASA mission may incur billions

of d_llars, which makes loss of a mission a very serious

matter. Launch windows are often inflexible. For example

Mars missions may only be launched every 26 months, for

planets to be in specific favorable positions. Failing to

prepare such a mission on time is equivalent to loss of

mission. There is therefore, often, a very strict "time to

market". These reasons make the organization particularly
sensitive to issues of reliability, and conservative in

accepting new technologies that cannot be verified
adequately.

As extremely ambitious projects are aimed for by

NASA, software plays a greater role in its missions. For

example, compared to the 32,000 lines of code required

for the Cassini space craft, the International Space Station
contains 2 million lines of code operating on 52

computers. Such software is typically developed by

distributed interdisciplinary teams of contractors and
NASA engineers. Information and knowledge about

software process and products must be exchanged across

organizational boundaries inside and outside of NASA. As
a result, component integration is a critical issue that has

to be addressed and verified at all phases of software

development.

The current trend within NASA is toward more-

frequent lower-cost missions. Even when missions have

different objectives, there are a lot of common decisions
made during mission planning and design. Therefore, to

achieve the required quality within limited mission

budgets and time frames, NASA must develop software
architectures that can be reused across missions and

components that can be adapted to specific mission

requirements.
In what follows, we outline a number of NASA

application areas in which we conduct research related to
component architectures, integration, and verification.

2. NASA Applications

This section provides an overview of challenging

application areas we are investigating, of research issues

they involve, and of targeted technologies.

2.1 Autonomous Architectures

Autonomous software systems pose new challenges to

software verification. They involve complex concurrent
behaviors for reacting to external stimuli and possibly

unpredictable environments without human intervention.

Such an example is software for Rovers for Mars
missions. In the past, a Rover would receive from ground

plans corresponding to fully deterministic/inflexible

executions of the Rover. In future missions, these plans

will allow an increasing degree of flexibility. The Rover
will be able to make behavioral decisions based on

environmental or timing conditions. This results in a huge

number of possible executions that would need to be

thoroughly verified to avoid loss of time, resources, or
even loss of mission.

Extensive verification and validation are therefore pre-

requisites for the deployment of missions that involve
autonomous systems. For such complex systems, however,

traditional testing techniques have proven insufficient in

providing the desired degree of correctness guarantees.

For example, despite extensive testing, the Remote Agent,
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supp,_rt the veril]cati_m of INI,-\ archhcctures and

applic:ttion._ running on IMA. Initial investigatiuns with

DEOS, a microkernel-bascd real-time operating system
u_cd in Honeywell's Primus Epic avionics product line,

have shown that model-checking can be effective in

vcril_'ing critical properties of these architectures [91.

However. more research is needed to scale the technology

to lull-size [MA systems and to address independent

certification of [MA applications [ 10].

The cost-saving promises of independent certification
and reuse-based certification are attractive elements of the

IMA approach. However, it is well known that, except in

the most controlled environments, software reuse quickly

becomes an ad-hoc process with unpredictable results. To

address this issue, we are developing component-based

application generation technology, which produces a

certification argument during the generation process. This

work is an extension of previous work that uses automated
theorem proving technology to generate software from

subroutine libraries along with explanations of how the

software was derived [11, 12]. The approach we are

investigating is to use formal specifications to represent

both the generic behavior of the reusable components as

well as adaptation and configuration techniques that are

used to integrate the component into the generated

application. It is our hypothesis that separating the

specification of component function from interaction will

provide a more effective framework for constructing

certification arguments.

2.3 Component-Based Scientific Programming

Data analysis and visualization are major activities

required for the support of NASA science missions.
Numerous software toolkits and libraries are available to

support the construction of custom data analysis and

visualization applications. However, due to differences in

data formats and system implementation styles, using
these systems often requires space scientists to perform

extensive custom programming that is time-consuming,

expensive and not reusable between missions. In addition,
current approaches to developing scientific software do

not scale well. Scientific software is commonly developed

from prototype systems and is evolved through

experimentation. As the software is expanded and
generalized, it becomes difficult to modify and maintain

due to this ad-hoc development style. Because scientific

problems are becoming larger and more complex, these

software-engineering issues are unavoidable.
To address these problems, there has been a recent

movement toward component-based software

development for scientific programming. Increased

reliability is the primary benefit of a component-based
approach from the perspective of scientific applications,
because unreliable software leads to unreliable scientific

results [t3l. in addition, it sirnplifies component

integration and can address the scalability and

maintainability problems of scientific applications.

To support the use of comptment-based software fi)r

web-based data analysis applications, we are integrating

c<_mponent-based application generation technology into a
middleware infrastructure [14]. Using this infrastructure,

scientists will provide a specification of three kinds of

components: (t) the desired data source. (2) a data

analysis filter, and (31 a visualization device. From this

infi_rmation, the desired application will be generated

automatically. To provide this automated capability, the

infrastructure contains an intelligent component

integration system (iClS) that automates component

retrieval, adaptation, and integration using automated
reasoning [15-17]. It takes the user's request, locates the

corresponding components in a heterogeneous and
distributed environment, and uses component interface

specification and data archive meta-data to automatically

generate any adapters required for component integration.

Thus, the need for time-consuming and expensive custom

programming will be reduced.

3. Discussion

The research projects that we have described in this

paper are at very early stages. We are still trying to

capture the complexity of the problems they involve, let

alone solve those problems.
Modularity can pay off during all phases of system

development. [t is the most promising factor in scaling

system verification; it can make systems more flexible, in

that it facilitates replacing components or plugging in new
ones. To achieve it is, however, far from straightforward.

It requires careful design of a system as early as at the

architecture stage.
One of the issues we need to address within this

context is to provide support for checking systems or their

components in isolation. This requires providing

appropriate environments or contexts for them. A
common factor in the applications that we have described

is that the environments in which they operate are

complex and unpredictable, so that it becomes very
difficult to provide any type of constraints for their

possible behaviors. Moreover, the complex relationships
that exist between the components in these systems make
it difficult to construct context/environment models that

can be used to verify non-trivial properties

compositionatly.
An additional issue has to do with defining component

interfaces and checking their compatibility, but for
intbrmation that involves behavioral, rather than simply

syntactic aspects. However, the type, degree of detail, and
form that this information must take to support tractable



verification uf pmpcrtiex ,_t' practical interest is an open
researchissue.

There remains a lot of work to be done towards

dc,_ck_ping gt_,_d s_ftware engineering principles in

general. Given the particular nature and complexity of the

problems we arc faced with, we are first working toward

domain-specific solutions as a more realistic goal. We

anticipate that architectures for our target applications will

gradually evolve to provide some verifiable guarantees

about domain-specific requirements.

Ultimately. we would like to be able to advise

engineers about how to design and structure their systems

for verifiability. The need for a maximum degree of

reliability in NASA missions would justify adapting the

software and systems developed to the rules that the need

for verifiability might provide. As the architectures and

tools mature, it may be possible to use domain-specific

application generation technology to support reuse of
these verified architectures.
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